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Obstacles and opportunities in meta-analysis of 
genetic association studies 
Georgia Salanti, PhD1, Simon Sanderson, DPH2, and Julian P.T. Higgins, PhD3 

Genetic association studies have the potential to advance our understanding of genotype-phenotype relationships, 

especially for common, complex diseases where other approaches, such as linkage, are less powerful. Unfortu­

nately, many reported studies are not replicated or corroborated. This lack of reproducibility has many potential 

causes, relating to study design, sample size, and power issues, and from sources of true variability among 

populations. Genetic association studies can be considered as more similar to randomized trials than other types 

of observational epidemiological studies because of “Mendelian randomization” (Mendel’s second law). The 

rationale and methodology for synthesizing randomized trials is highly relevant to the meta-analysis of genetic 

association studies. Nevertheless, there are a number of obstacles to overcome when performing such meta­

analyses. In this review, the impacts of Type I error, lack of power, and publication and reporting biases are 

explored, and the role of multiple testing is discussed. A number of special features of association studies are 

especially pertinent, because they may lead to true variability among study results. These include population 

dynamics and structure, linkage disequilibrium, conformity to Hardy-Weinberg Equilibrium, bias, population strat­

ification, statistical heterogeneity, epistatic and environmental interactions, and the choice of statistical models 

used in the analysis. Approaches to dealing with these issues are outlined. The supreme importance of complete 

and consistent study reporting and of making data readily available is also highlighted as a prerequisite for sound 

meta-analysis. We believe that systematic review and meta-analysis has an important role to play in understanding 

genetic association studies and should help us to separate the wheat from the chaff. Genet Med 2005:7(1):13– 

20. 
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Genetic association studies assess correlations between dis­
ease status and genetic variants in a population.1 They have 
been particularly advocated for the investigation of complex, 
chronic diseases where other approaches (such as linkage) are 
less powerful. Advances in genotyping techniques and the dis­
covery of a huge number of variants in the human genome 
have led to a proliferation of association studies, many of 
which have not led to advances in our understanding of dis-
ease.2 Sadly, the literature contains many reported associations 
that cannot be replicated or supported by linkage or functional 
studies.1,3 This lack of reproducibility stems from a number of 
causes, related to study design, sample size, and power issues, 
and true variability between populations.4 

Meta-analysis provides an opportunity to help identify gen­
uine associations by addressing some of these obstacles.5,6 Re-
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cently, an eloquent introduction to meta-analysis as applied to 
genetic association studies has been published.7 Although 
methods for meta-analysis of randomized trials are well devel­
oped, methods for observational studies lag some way behind.8 

However, some have argued that genetic association studies 
are more closely related to randomized trials than other types 
of epidemiological study because of “Mendelian randomiza­
tion” (Mendel’s second law).9,10 The random allocation of al­
leles at any particular locus may provide a mechanism similar 
to randomization in clinical trials. This random assortment of 
alleles theoretically should be independent of environmental 
factors. The rationale and methodology for synthesizing ran­
domized trials may therefore be highly relevant to the meta­
analysis of genetic association studies. 

Our aim in this review is to identify key issues and their 
implications for the meta-analysis of genetic association stud­
ies. The article is organized in four sections. In the first section, 
we discuss the role of chance (type I error), publication, and 
reporting biases. In the second section, we support these views 
using evidence from published studies on these topics. The 
third section previews the special features of genetic associa­
tion studies that may lead to true variability in associations 
across studies. These include the impact of population struc­
ture and dynamics, conformity to Hardy-Weinberg Equilib­
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rium, and the choice of statistical models used in the meta­
analysis. Finally, we discuss how all of these issues can be 
addressed when performing meta-analysis. We conclude with 
a plea that the reporting of genetic association studies should 
be complete and consistent to facilitate sound meta-analysis. 

CHANCE EFFECTS AND MULTIPLE GENES 

Inconsistency of findings across studies can be due to false 
negatives (underpowered studies), false positives (spurious 
findings), or true variability across different populations.11 

Given a large and representative selection of studies of a par­
ticular association, the first two would not cause concern, as 
the false-negative and false-positive findings would cancel each 
other out across studies. However, in reality, the availability of 
findings may be expected to depend on the significance of the 
result as perceived by the investigators. Thus, false-negative 
results may be suppressed and false-positive results given 
prominence. 

Lack of power 

Genetic association studies have a tendency to lack the 
power to detect a statistically significant association. Indeed, 
the most realistic genetic association between a polymorphic 
locus and a disease has been claimed to yield an odds ratio 
between 1.1 and 1.5.12 Therefore, to achieve a satisfactory 
power, at least 1000 subjects are required, and often more, 
depending on the prevalence of the polymorphism. Lohmuel­
ler et al.11 highlighted this problem, observing that true effect 
magnitudes based on meta-analyses of multiple studies require 
sample sizes for individual studies of several thousands sub­
jects. Whereas some large cohort studies have been undertaken 
recently, for many studies such a large sample size is an unre­
alistic goal. Meta-analysis of multiple studies clearly has a role 
in offering an analysis with the potential for higher power.7 

Because power calculations are based on expected effect 
magnitudes, usually derived from previous studies, overopti­
mistic early findings can lead to subsequent studies being un­
derpowered. This has been shown to be an important problem, 
especially when the true association is weak.4,13 

Reporting biases and multiple comparisons 

Lack of power is a long-standing problem for single studies, 
but can to an extent be addressed by the combination of mul­
tiple studies. However, the problem of false-positive studies 
has emerged as the key threat to the validity of meta-analyses of 
genetic association studies. Reporting biases is a well-estab-
lished problem in meta-analysis but most attention has been 
given to the absence of entire studies on the basis of the statis­
tical significance of the main finding. The inclusion of unpub­
lished data as a means of reducing publication bias is com­
monly suggested although the ability to locate all unpublished 
studies is rare in practice. 

A more important problem in meta-analysis of genetic as­
sociation studies is bias due to within-study selective reporting. 
This occurs when multiple analyses have been performed but 

only a selected subset of them is reported. We can typically 
investigate many more potential genetic markers than envi­
ronmental exposures, and testing multiple hypotheses about 
numerous loci or markers in a gene runs the risk of false-pos-
itive findings. Genetic association studies vary widely in the 
number of markers they investigate. Selection of markers is 
relatively straightforward if there is a variant of the candidate 
gene that is known to have a functional effect or is suspected to 
be directly responsible for predisposition to the disease. This 
should increase the prior probability of detecting a true asso­
ciation if one exists. Alternatively, genomic scans and compre­
hensive studies can cover very large numbers of markers.1,14 

Furthermore, quantitative traits may be affected by a large 
number of gene variants that only have a small impact on trait 
variability.15 

Other candidates for multiple testing include multiple phe­
notypes (e.g., disease outcomes), multiple patient subgroups, 
and multiple statistical models (including different assump­
tions regarding mode of inheritance). Adjustments for multi­
ple testing may temper the statistical significance of the find­
ings, but may not be sufficient to prevent selective reporting 
bias. Constraints on the length of published articles can result 
in only the most exciting results being presented, even if the P 
values have been adjusted for multiple testing. Electronic pub­
lishing of extensive results tables and data depositories for 
studies of gene-disease association studies would go a long way 
toward making unbiased results available for meta-analysis. 

A growing number of empirical studies are finding that early 
results relating to a particular marker may be overoptimistic, 
providing indirect evidence of selective reporting of exciting, 
yet spurious, findings. In the next section, we overview these 
empirical studies. 

EMPIRICAL EVIDENCE OF LACK OF REPLICATION 

Meta-analyses provide the strongest evidence when the 
findings of multiple well-conducted studies agree. A problem 
in genetic association studies that has attracted particular in­
terest is agreement between the first published study and later 
results. This may occur primarily because of reporting bias, 
including simple publication bias, selective reporting, or dif­
ferential time lag between conduct and reporting of the study 
according to the findings. These are not unusual observations 
in epidemiological research, but in the case of genetic associa­
tion studies the problem is more important given the large 
number of potential exposures, many without strong rationale 
for being related to the outcome. 

Ioannidis et al.16 have examined a number of meta-analyses 
of genetic associations. Combining observations across meta­
analyses, they found that the result of the first study showed a 
tendency to overestimate the true effect, particularly when the 
original study contained few participants. In addition, they 
observed that the greater the number of subsequent studies 
included in the meta-analysis, the larger the discrepancy be­
tween the pooled and first published result, although this may 
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at least partly be explained by increased power to detect the 
discrepancy. 

The same authors addressed the problem of heterogeneity 
and bias in an extension of the above mentioned study.17 They 
reviewed 55 meta-analyses of genetic associations, aiming to 
investigate whether the size of a study was associated with the 
outcome, to test whether any discrepancy between the results 
of the first and any subsequent trials appeared genuine (and 
determine the direction of any effect), to determine how often 
heterogeneity occurs, and finally, to test if and when these three 
situations coexist. The authors concluded that heterogeneity 
between studies occurred frequently and that the presence of 
heterogeneity was related to the presence of discrepancies ei­
ther between small versus large studies or between the first 
versus subsequent studies. These two sources of discrepancy 
did not significantly coexist. 

Using the same dataset of meta-analyses, Trikalinos et al.18 

revisited the problem of publication bias related to the first 
published study. They show that early published reports have 
minimal predictive value over the establishment of a signifi­
cant association at the meta-analysis level. However, the con­
clusion of the first-published study has important implications 
for the pursuit of research on the given association: statistically 
significant first-published studies are followed by more studies 
over a longer period, whereas associations that are initially 
nonsignificant do not attract further research. 

Hirschhorn et al.13 scrutinized studies on 166 gene-disease 
associations. Only six collections of studies were considered to 
replicate findings. They concluded that early significant find­
ings were often not reproduced in subsequent studies and ar­
gued that chance was an unlikely explanation of this finding. A 
combination of genuine sources of variation, such as different 
populations, the extent of linkage disequilibrium and gene­
gene and gene-environment interactions was posed as a possi­
ble reason for the discrepant results. Furthermore, the authors 
suggested that low power to detect small genetic effects con­
tributed to the lack of replication. 

Further investigation of a subset of the same collections of 
studies on 25 gene-disease associations by Lohmueller et al.11 

addressed the problem of disagreement between the result of 
the first statistically significant study and the results of subse­
quent studies. They found that the association reported in the 
first study exceeded that from a meta-analysis of subsequent 
studies in 24 of the examples, highlighting the importance of 
not relying on initially statistically significant findings. How­
ever, in 11 of the meta-analyses there were at least two studies 
that replicated the first positive study, and eight of the meta­
analyses showed a statistically significant association in agree­
ment with the first positive report. The authors thus concluded 
that a sizable fraction of studies showed evidence of replication 
and that false-negative studies contributed to inconsistent rep­
lication. They argued that population admixture and publica­
tion bias were less likely explanations, and that meta-analysis is 
an essential tool until large, well-designed and well-reported 
studies become common. 

SOURCES OF INCONSISTENCY 

There are many reasons why gene-disease associations may 
genuinely vary among studies included in a meta-analysis. A 
key source of variation is the diversity in the populations stud­
ied, which may be an issue both within studies and across stud­
ies. Use of different phenotypic outcomes may also induce in­
consistency. Variation in the methods used by the different 
studies leads to a different kind of inconsistency: variation in 
the extent of bias in the associations that the studies are evalu­
ating. All of these sources of diversity might lead to variation in 
effects beyond that which may be expected due to chance 
alone, a situation commonly referred to as heterogeneity in the 
meta-analysis literature. Some of these issues have been dis­
cussed previously.4 We review them briefly in this article, 
mainly from a hypothetical point of view: there is little empir­
ical evidence of the relative importance of different potential 
sources of inconsistency. 

Population characteristics 

Linkage disequilibrium and population dynamics 

A genetic marker that is targeted in an association study may 
not be a disease-causing locus itself, but may be linked to a 
causal one, such that passage of variants of the marker from 
one generation to the next are correlated with passage of vari­
ants of the disease-causing mutation. The resulting linkage dis­
equilibrium (LD) will yield a significant association between 
the marker and the disease itself. The extent of LD between 
alleles reflects a population’s recombination history. The fur­
ther successive generations are from the original mutation the 
more recombinations occur, resulting in a smaller amount of 
shared DNA between individuals. LD can vary within and be­
tween populations because of regional variability of LD, ge­
netic drift, population admixture, location chromosomal 
structure, and mating patterns. 

These differences have been demonstrated between the UK 
and Finland. In Finland, the population has expanded from a 
relatively recent bottleneck, whereas in the UK the population 
has expanded gradually over many generations. Eaves investi­
gated microsatellites from chromosome 18q21 in 664 British 
and 430 Finnish subjects: LD exists in both populations but 
extends over a longer range (up to 3 cM) in Finns.19 Further, 
LD may occur in one population but not in another. For ex­
ample, many of the observed associations with TNF-� may in 
fact reflect a true association with the HLA locus that has 
strong LD over large distances.13 

True associations due to LD can show conflicting results 
depending on the population studied and the particular fea­
tures of the DNA in those populations. Therefore, an attempt 
to assess LD may contribute to an understanding of why con­
flicting results arise in published studies and how best to deal 
with them in the context of meta-analysis. Whenever there is 
doubt about the nature of a disease-associated polymorphism, 
investigation of adjacent markers, say nearby SNPs in the same 
gene, may confirm whether the association is causal or due to 
LD. Characterization of background levels of LD, including 
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genomic features such as G�C levels, repetitive elements, and 
predicted or known hotspots may help in this regard.20 

Allelic and locus heterogeneity 

Both allelic heterogeneity (where many different mutations 
in the same gene can cause the same phenotype) and locus 
heterogeneity (where the same disease is caused by genetic 
variation in different loci in affected individuals) can result in 
different degrees of association among different studies. The 
association between any particular allele and disease, even if 
that allele has the same frequency in different populations, will 
depend on the frequency of any other disease-causing alleles. If 
these other alleles vary in frequency across populations, then 
different associations will be found. These variations are likely 
to have their own genetic ancestral background, different an­
cestral haplotypes, and nonrandom association patterns. An 
example of locus heterogeneity is provided by tuberous sclero­
sis, which is caused by mutations at either of two loci, TSC1 
and TSC2. Familial hypercholesterolemia displays allelic het­
erogeneity, where over 700 disease-causing mutations of the 
low-density lipoprotein gene have been described to date. The 
frequency of these mutations varies extensively with the spe­
cific populations studied throughout the world.21 

Isolated populations 

Some genetic association studies are performed in popula­
tions that are more or less isolated. There are theoretical ad­
vantages to performing association studies in isolated popula­
tions such as Iceland or Finland, but they are often limited 
because the number of cases is too low to generate enough 
statistical power. Younger, isolated populations are more likely 
to show linkage disequilibrium. This could affect the presence 
and strength of any association detected. A degree of inbreed­
ing can occur even in apparently mixed European populations 
(for example, within the Netherlands).2 

Population stratification 

Population stratification occurs when genetic variants are 
studied in samples that include a mixture of genetically distinct 
populations. If the studied disease is more common within a 
particular ethnic group, this group will be overrepresented in 
the cases. Therefore any polymorphism that marks genetically 
this ethnic group will appear to be associated with the out­
come, clearly producing a false-positive finding. This effect is 
an important potential confounding variable and warrants 
careful thought and interpretation in assessing primary studies 
and their effects on meta-analysis. 

For a confounding variable to be important it must have an 
effect of comparable magnitude to the main effect being inves­
tigated. The effect of population stratification has been as­
sessed conceptually and empirically in certain populations and 
has been shown to be much less important than first 
thought.22,23 However, the empirical evaluation was limited to 
the specific population studied (non-Hispanic Caucasians) 
and a single polymorphism (only N-acetyltransferase, NAT2), 
which reduces the applicability of the conclusions.22 Edland24 

also challenged the generalization of these findings and argued 
that ethnicity information should be used whenever available. 
On the other hand, Lohmueller et al.11 exemplified how strat­
ifying for ethnicity does not necessarily remove heterogeneity. 
Whereas it is widely acknowledged that situations where pop­
ulation stratification can be a significant confounder are rare, 
researchers do not advise that the issue should be ignored.4,13 

We agree that control for population stratification remains an 
important consideration, as it has the potential to expose gen­
uine variation in the size of the association, including that 
caused by ethnicity-dependent penetrance and environmental 
differences. 

Certain approaches in study design can mitigate the effect of 
population stratification. These methods include unlinked ge­
nome markers,25 family-based design, and the use of parental 
controls and the transmission disequilibrium test.13,26 Where 
this is not possible, each ethnic group can be analyzed sepa­
rately, and association then tested within each group.11 

Hardy-Weinberg equilibrium 

Hardy-Weinberg equilibrium (HWE) refers to a situation in 
which the frequencies of genotypes are predicted by the fre­
quencies of two alleles under a simple Mendelian inheritance 
model. The specific assumptions underlying HWE, including 
random mating, lack of selection according to genotype, and 
absence of mutation or migration, are rarely all met in human 
populations. However, population-based studies roughly ap­
proximate to HWE if they are large enough and they do not 
usually provide enough information to assess the size of depar­
ture from HWE.27,28 Moreover, statistical tests for HWE are 
not powerful and can only detect large deviations, especially in 
small studies. 

HWE.
Genotyping error is an important cause of deviation from 

28,29 Deviations may also occur in small populations due 
to genetic drift and founder effect, nonrandom mating (which 
occurs to some extent in nearly all groups but is especially 
common for some conditions such as deafness, epilepsy, and 
small stature), and heterozygote advantage (where heterozy­
gotes have, or have had, some reproductive advantage over 
normal homozygotes; for example, in cystic fibrosis). 

Confounding due to gene-gene and gene-environmental interaction 

Confounding due to gene-gene epistatic interaction can oc­
cur when the studied trait is not caused by a gene alone, but by 
the effect of interactions between two or more loci. In addition, 
most common diseases arise as a result of an interactive mech­
anism between gene and environmental circumstances, which 
may vary both between and within populations. Thus interac­
tions between the gene being studied and other factors are a 
potential explanation for inconsistency in results across stud­
ies. The lack of an association in a study does not necessarily 
exclude a gene-gene or gene-environment interactions, and 
thus the existence of a true association in a subgroup of 
participants. 

Despite the problems of measurement of environmental 
factors, abandoning attempts to investigate these potential in-
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teractions would be inappropriate.30 Hirschorn et al.13 argue 
that failure to address such confounding represents an impor­
tant explanation for the nonreplication of genetic association 
studies. Little et al.31 underline the need to include and accu­
rately report environmental and genetic factors that poten­
tially contribute to the manifestation of the disease in order to 
enhance their compatibility within a meta-analysis and rein­
force the quality of the conclusions. As such, it is essential that 
both gene-environment and gene-gene interactions are con­
sidered at the level of both the individual studies, as well as in 
the meta-analysis.4,13,32 Unfortunately, to overcome most con­
founding, one usually needs to perform a meta-analysis of in­
dividual participant data, which is not always feasible.33 

Definition of phenotypes 

Variation in the definition of clinical outcomes can be a 
major source of inconsistent results across studies. Some case­
control studies may use extreme phenotypes. For example, 
studies of colon cancer cases can be restricted to those with 
extreme polyposis, a trait following a simple Mendelian pat­
tern. For continuous traits, cases at the extremes of the distri­
bution are often recruited to increase the possibility of detect­
ing a genotype-phenotype association. Other studies may 
include more general populations, and their results may differ 
considerably from those in extreme phenotypes. Variable gene 
penetrance and expression in dominant conditions can lead to 
problems in how phenotypes are identified and classified. 
There may be also variation in diagnosis of different clinical 
outcomes. 

Increased precision can be often achieved by using “inter­
mediate phenotypes,” essentially protein markers, from mo­
lecular studies that allow phenotypes to be better classified. 
Such outcomes are also prone to error in measurement. 

Design and conduct 

Several study designs are used to investigate gene-disease 
associations, including case-control, cohort, cross-sectional, 
and family-based designs. There is evidence from other areas of 
epidemiology that different study designs can yield systemati­
cally different estimates of the same underlying association.6 

Furthermore, the conduct of the study (often termed “qual­
ity”) and the course of events during the study (such as attri­
tion in prospective studies) may be associated with biased es­
timates. In this review, we address two of the sources of bias 
with particular implications for genetic association studies: se­
lection of participants and measurement of exposure. 

Choice of participants 

Systematic differences between cases and controls in a case­
control study are an important cause of biased results. Con­
trols should provide an estimate of the exposure distribution 
from which cases occur, so their selection is crucial to the suc­
cess of the study. In practice, many studies use convenience 
samples rather than population-based controls, and so the 
controls are not derived from the true source population. Poor 
selection may introduce numerous important differences, in-
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cluding ethnic differences and differences in environmental 
exposures. These can lead to nonrepresentative genotype dis­
tributions and different gene-disease associations. 

Prospective cohort studies are generally less susceptible to 
bias due to choice of participants. However, retrospective co­
hort and cross-sectional studies run the risk of being inappro­
priately selective in the participants they choose. 

Case-control studies using prevalent cases (for example, 
from a disease register) may find associations with genetic vari­
ants that relate not only to etiology but also to survival (prog­
nostic factors or treatment susceptibility). Studies using inci­
dent cases to investigate etiology may not necessarily be 
affected by this problem. While obtaining truly incident cases 
in population-based case-control studies is difficult, it is im­
portant to assess what proportion of truly eligible cases were 
included and the reasons why some were not. The etiology of 
BCHE K variant in Alzheimer disease is a recent example. The 
association was significant in studies where the age of cases was 
the age of onset, whereas it was nonsignificant in studies where 
the recorded age was the age at death.15 

Definition of the genetic exposure 

A number of methods can be used to determine genotype. 
Genotyping errors can occur because of specific sequence dif­
ferences in the region of the gene variant being investigated. 
For example, the assay for Ile462Val polymorphism in 
CYP1A1 may be interfered with the Thr461Asp polymor­
phism, depending on the method used. If this “interfering” 
SNP varies between populations, the error will be both method 
and population specific. This will usually cause deviation from 
HWE. Genetic testing quality assurance is an important aspect 
of study quality.32 

A similar problem related to misclassification may be ob­
served when some studies use the genotype to classify the ob­
servations, whereas some other studies use protein expression. 
We highlight this problem using an example from meta-anal-
ysis of studies relating bladder cancer risk with polymorphisms 
in N-acetyltransferase gene NAT2.34 The genotype is classified 
as rapid or slow according to the activity of the NAT protein. It 
has been assessed that genotypes missing two copies of the 
wild-type allele NAT2*4 are classified as slow acetylating phe­
notypes. In some bladder cancer case control studies, individ­
uals are classified as rapid or slow according to genotype and 
according to protein phenotype in others. Putting together 
these studies in a meta-analysis may cause bias because of mis­
classification error. The link between genotype and its protein 
expression is not fully understood and classification of inter­
mediate states can cause problems. 

META-ANALYSIS OF GENETIC ASSOCIATION STUDIES 

The previous section outlined several sources of genuine 
variation in gene-disease associations when they are investi­
gated in multiple studies. These clearly have implications for 
the combination of results across studies in a meta-analysis. 
Here we discuss some of these implications, along with those 
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arising from the previous discussion of chance and reporting 
bias, and some other issues in the statistical synthesis of gene­
disease association studies. 

Investigating heterogeneity 

A substantial literature exists on general approaches to iden­
tifying and addressing heterogeneity in meta-analysis.35–38 Sta­
tistical tests for heterogeneity, quantification of inconsistency, 
random effects models to incorporate variation in true effects, 
and meta-regression to examine potential reasons for this vari­
ation are in common practice. Lohmueller et al.11 proposed 
that heterogeneity should be carefully examined by either clin­
ical or statistical methods, and that the magnitude of the het­
erogeneity should be quantified, wherever possible. Colhoun 
et al.4 propose that the main reasons for nonreplication are “all 
rectifiable,” suggesting that in the future, heterogeneity may be 
much less of a problem. A limitation of virtually all analyses of 
heterogeneity, particularly investigations of its cause, is that 
many studies are required before meaningful results are 
obtained. 

Choice of the statistical model 

rium.

A typical genetic association study categorizes participants 
into three exposure groups according to genotype (e.g., AA, 
aA, and aa). Several options are available for the analysis of 
such data. First, an analysis by alleles (i.e., A vs. a) reduces the 
data to a 2 � 2 table in which each participant is represented 
twice. This approach is not recommended by some researchers 
because the resulting odds ratio does not reflect the genotype 
risk and requires an assumption of Hardy-Weinberg equilib-

31,39 However, determining equivalence of disease risk 
between A and a alleles provides strong evidence of a lack of 
association. Second, a specific mode of inheritance may be as­
sumed from among the dominant, recessive, or codominant 
(per-allele) genetic models, again reducing the data to a 2 � 2 
table. Attia et al.39 suggest that the choice of model should 
express genotype risk in a meaningful way according to some 
biological background. It is unclear what might constitute such 
biological background. In many reports of individual associa­
tion studies, the model applied suggests an underlying as­
sumption about the inheritance mode without being made ex­
plicit. A third option is to analyze the data using all three 
inheritance models, thus performing multiple pairwise com­
parisons. This creates the risk of the most exciting result being 
reported, and correction may be appropriate for the multiple 
comparisons. A final approach is to determine which genetic 
model is most compatible with the data, by including a param­
eter to be estimated that distinguishes between the three 
modes, and possibly intermediate situations. 

A common problem for the meta-analyst is how to deal with 
results reported in different ways. For example, if some studies 
report only results for carriers and noncarriers (i.e., assuming a 
dominant genetic model), then other genetic models cannot be 
applied using standard techniques. 

Assessing and addressing Hardy-Weinberg equilibrium 

There is some debate over whether individual studies for 
which the Hardy-Weinberg equilibrium (HWE) assumption 
does not hold, has not been assessed, or cannot be assessed 
from the published information should be included in a meta­
analysis. Although any departure from HWE should be inves­
tigated, many investigators do not believe that departure 
should be a major criterion for study inclusion/rejection. In 
any case, it is recommended that a sensitivity analysis be per­
formed with and without these studies, before presenting the 
results.39 Especially when applying the per allele model to the 
analysis, this issue should be carefully investigated because a 
failure to conform to HWE may indicate that the alleles do not 
segregate randomly. 

Multiple markers 

It is common for a meta-analysis, or collection of meta-analy-
ses, to address several polymorphisms on the same gene. The ex­
tent to which it is appropriate to combine multiple polymor­
phisms in the same analysis is undecided. Bellivier et al.40 advocate 
a restrictive approach, suggesting that only studies that refer to the 
same genetic marker, where the effect has been analyzed with the 
same model, and where the populations were selected according 
to the same criteria, should be grouped together. Taking a broader 
perspective, one might argue that every (functional) variant of a 
gene could be combined in order to maximize power to detect an 
association between the function of the gene and the risk of dis­
ease. An intermediate position would be to combine studies of 
polymorphisms that have been demonstrated to be in strong link­
age disequilibrium. 

Problems associated with multiple markers arise in other 
situations, including the investigation of quantitative traits, 
where many genetic polymorphisms may contribute small 
amounts to variability in phenotypes. Specific methods for 
combining multiple, possibly linked, polymorphisms have not 
to our knowledge been developed. 

Mendelian randomization and covariates 

The idea of Mendelian randomization, as we stated in the 
introduction, gives genetic association studies some notional 
similarity to randomized trials. But is it sufficient in practice, 
or should adjustment for covariates be considered? Some au­
thors argue that the results can be confounded due to the dis­
tribution of important biomarkers, such as sex and age, both 
between and within studies. The patterns of linkage disequilib­
rium in human populations are not well understood: LD can 
occur at great distances from alleles of interest and can vary 
substantially between populations. 

This is largely a theoretical issue until supportive empirical 
data become available. Some empirical work on this topic has 
been undertaken by Taioli and Bonassi41 who studied the role 
of biomarkers in the pooled analysis of individual participant 
data. They concluded that there has been little attention on 
measuring confounding factors and genetic association studies 
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are rarely conducted according to the established guidelines for 
epidemiological studies. 

Assessing risk of bias in individual studies 

How risk of bias should be measured, and how, or if, these 
measurements should be incorporated into a meta-analysis is 
one of the controversial areas of meta-analysis in general. 
Many now recommend a component-wise approach,42 

whereby important aspects of quality are assessed in a simple 
manner, but are not combined into a single “quality score.” We 
align ourselves with this approach. No agreed list of important 
components is widely cited in the literature. In addition to the 
classical evaluation criteria (such as explicit description of the 
cases), genetic studies should also be evaluated according to 
their specific character, such as testing for HWE and control of 
population stratification. 

One of the few resources is the checklist of Little et al.32 for 
reporting and appraising genetic studies. They propose that 
the most important issues to be evaluated are subject selection 
(selection bias), validity of the genotyping, analysis for popu­
lation stratification, gene-environment and gene-gene interac­
tions, and statistical power. 

An empirical evaluation of the quality of genetic association 
studies has been conducted.43 The authors assessed the quality 
of 40 case-control and cohort studies according to seven crite­
ria: reproducibility of the genotyping method, study blinding, 
appropriate delineation of cases and controls, adequacy of the 
cases spectrum, adequacy of controls, and appropriate quanti­
tative analysis. The results showed that more than the half of 
the studies failed to comply with two or more of these quality 
requirements. 

Publication bias and selective reporting bias 

Colhoun et al.4 propose that the failure to exclude chance 
and publication bias presents an important problem in repli­
cation of findings from gene-disease association studies. In 
common with issues around heterogeneity, the problem of 
publication bias has received considerable attention in the gen­
eral meta-analysis literature.44 Many of these methods lack 
power when there are few studies. A recent report has revealed 
disturbing degrees of selective reporting of outcomes in clinical 
trials and similar problems doubtless permeate the genetic ep­
idemiology literature.45 Although no methodological frame­
work has been developed so far to address this problem in its 
entirety, some developments have been made in the field of 
clinical trials.46,47 Such methods could be extended to genetic 
association studies, although the assumptions required for 
them may prove complicated and controversial. 

Methods to account for multiple tests may have a role in the 
meta-analysis context.4 False-positive findings should where pos­
sible be identified. Campbell and Rudan2 suggest an approach for 
doing this, although a unique definition has not been agreed. 

As discussed in the previous section, some interest has fo­
cused on empirical comparison of initial findings with later 
findings.11,16 The authors have proposed that the result of the 
first study may represent a false positive and thus should be 
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excluded from the meta-analysis. The resulting drop in power 
may have important implications for small collections of stud­
ies, and so an assessment of the extent of the discrepancy is also 
pertinent. An investigation of the evolution of results over 
time, for example using meta-regression, may also indicate 
early spurious associations. An alternative approach is to per­
form a “winner’s curse” analysis.11 This method aims to correct 
for inflations in the P-value of the first published study (usually 
highly significant) by dividing it by a correction factor. This 
correction factor is the probability of observing an odds ratio at 
least as large as the one reported in the initial positive study, 
assuming that the real genetic effect is accurately estimated by 
a subset of the available studies. This subset is defined by the 
studies satisfying one of the three characteristics usually met by 
the first-published study: P � 0.01, OR � 2, or use of family­
based controls. The empirical evidence also suggests that dis­
agreements between the results of large versus small studies 
should generally be investigated in a meta-analysis. 

Reporting biases would be substantially reduced if studies 
and findings were reported in full. There will probably always 
remain unpublished studies of relevance. Whenever available, 
unpublished information should first be assessed for differ­
ences in baseline characteristics compared with the published 
studies, including biomarkers, allele frequencies, and Hardy-
Weinberg equilibrium.41 

CONCLUSION 

Obstacles and opportunities exist in the meta-analysis of 
genetic association studies. The obstacles include the risk of 
false-positive findings (Type I error) with associated reporting 
and publication bias, and numerous sources of true variability 
within and between populations, including population strati­
fication, epistatic and environmental interactions, and vari­
ability of LD within the genome. The opportunities are offered 
by the enhancement of power (reducing Type II error), the 
ability to place each study in the context of all others, particu­
larly early spurious results, and the possibility of examining 
why studies reach different conclusions. We have highlighted 
the implications for meta-analysis of a number of important 
statistical issues, including the first study effect, choice of sta­
tistical models, and assessing conformity to HWE. A clear un­
derstanding of these issues is required before embarking on a 
meta-analysis in this field. 

Meta-analysis of individual patient data from association 
studies may help overcome many of these problems,33,39 par­
ticularly those associated with incomplete reporting. Stan­
dardized definitions can be developed, adjustment for con­
founding can be performed, alternative genetic models and the 
role of multiple genes can be assessed and subgroups treated 
consistently. The collaboration of multiple primary research 
groups brings further benefits, including the possibility of pro­
spective genotyping of further polymorphisms. However, 
meta-analyses using individual participant data remain ambi­
tious tasks, cannot eliminate all biases and the full data are not 
always available retrospectively from investigators.33 
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There is therefore a need for complete and consistent up­
front reporting and publishing of genetic association studies to 
facilitate future meta-analysis. More detailed guidelines are re­
quired for the design, analysis, reporting, presentation, and 
availability of results. The CONSORT statement may provide a 
useful model for developing similar standards for genetic asso­
ciation studies.48 Furthermore, depositories for detailed results 
of all findings, including all null findings, would provide key 
resources for meta-analyses in this field. 

Meta-analyses of genetic association studies, when properly ap­
plied and interpreted, contribute to a greater understanding of 
common, complex diseases. They should both complement and 
inform the growing collection of large-scale cohort studies of ge­
netic predispositions such as the UK Biobank.49 The Human Ge­
nome Epidemiology Network (HuGE Net)50 is coordinating and 
publishing systematic reviews of genetic association studies, an 
endeavor comparable with the Cochrane Collaboration’s data­
base of systematic reviews of the effects of health care interven-
tions.51 Extensive guidelines for conducting systematic reviews of 
clinical trials are available,52 but similar resources for genetic as­
sociation studies are more limited.32 We hope that the HuGE Net 
movement, with others, will continue developing methodology 
and guidance, so that common standards can be agreed and a 
growing number of sound meta-analyses be produced to help us 
separate the wheat from the chaff. 
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